Invertibility along an operator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invertibility of the biharmonic single layer potential operator

Martin COSTABEL & Monique DAUGE Abstract. The 2 2 system of integral equations corresponding to the biharmonic single layer potential in R2 is known to be strongly elliptic. It is also known to be positive definite on a space of functions orthogonal to polynomials of degree one. We study the question of its unique solvability without this orthogonality condition. To each curve , we associate a ...

متن کامل

Invertibility of the Gabor frame operator on the Wiener amalgam space

We use a generalization of Wiener’s 1/f theorem to prove that for a Gabor frame with the generator in the Wiener amalgam space W (L∞, ` )(R), the corresponding frame operator is invertible on this space. Therefore, for such a Gabor frame, the generator of the canonical dual belongs also to W (L∞, ` )(R).

متن کامل

Coherence in amalgamated algebra along an ideal

Let $f: Arightarrow B$ be a ring homomorphism and let $J$ be an ideal of $B$. In this paper, we investigate the transfer of the property of coherence to the amalgamation $Abowtie^{f}J$. We provide necessary and sufficient conditions for $Abowtie^{f}J$ to be a coherent ring.

متن کامل

Restricted Invertibility Revisited

Suppose that m,n ∈ N and that A : R → R is a linear operator. It is shown here that if k, r ∈ N satisfy k < r 6 rank(A) then there exists a subset σ ⊆ {1, . . . ,m} with |σ| = k such that the restriction of A to R ⊆ R is invertible, and moreover the operator norm of the inverse A−1 : A(R) → R is at most a constant multiple of the quantity √ mr/((r − k) ∑m i=r si(A) 2), where s1(A) > . . . > sm(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operators and Matrices

سال: 2017

ISSN: 1846-3886

DOI: 10.7153/oam-11-22